Neural Network Based Face Recognition Using RBFN Classifier
نویسنده
چکیده
Face Biometrics is a science of automatically identifying individuals based on their unique facial features. The paper presents neural network classifier(Radial Basis Function Network) to detect frontal views of faces. The curvelet transform, Linear Discriminant Analysis(LDA) are used to extract features from facial images first, and Radial Basis Function Network(RBFN) is used to classify the facial images based on features. Radial Basis Function Network is used to reduce the number of misclassification caused by not-linearly separable classes. 200 images are taken from ORL database and was tested, where the parameters like recognition rate, acceptance ratio and execution time performance are calculated. Neural network based face recognition is robust and has better performance of recognition rate 98.6% and acceptance ratio 85 %. Index Terms Face recognition, Curvelet Transform, Linear Discriminant analysis , Radial Basis Function Network ,Recognition rate, Acceptance ratio, Execution time.
منابع مشابه
Face Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملAn efficient method to construct a radial basis function neural network classifier and its application to unconstrained handwritten digit recognition
Radial basis function neural network (RBFN) has the power of the universal function approximation. But how to construct an RBFN to solve a given problem is usually not straightforward. This paper describes a method to construct an RBFN classifier efficiently and effectively. The method determines the middle layer neurons by a fast clustering algorithm and computes the optimal weights between th...
متن کاملRobust Face Detection Using a Modified Radial Basis Function Network
Face detection from cluttered images is very challenging due to the wide variety of faces and the complexity of image backgrounds. In this paper, we propose a neural network based approach for locating frontal views of human faces in cluttered images. We use a radial basis function network (RBFN) for separation of face and non-face patterns, and the complexity of RBFN is reduced by principal co...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملRecognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کامل